Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
World J Clin Oncol ; 14(10): 409-419, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37970108

RESUMO

BACKGROUND: Colorectal cancer is a complex disease with high mortality rates. Over time, the treatment of metastatic colorectal cancer (mCRC) has gradually improved due to the development of modern chemotherapy and targeted therapy regimens. However, due to the inherent heterogeneity of this condition, identifying reliable predictive biomarkers for targeted therapies remains challenging. A recent promising classification system-the consensus molecular subtype (CMS) system-offers the potential to categorize mCRC patients based on their unique biological and molecular characteristics. Four distinct CMS categories have been defined: immune (CMS1), canonical (CMS2), metabolic (CMS3), and mesenchymal (CMS4). Nevertheless, there is currently no standardized protocol for accurately classifying patients into CMS categories. To address this challenge, reverse transcription polymerase chain reaction (RT-qPCR) and next-generation genomic sequencing (NGS) techniques may hold promise for precisely classifying mCRC patients into their CMSs. AIM: To investigate if mCRC patients can be classified into CMS categories using a standardized molecular biology workflow. METHODS: This observational study was conducted at the University of Chile Clinical Hospital and included patients with unresectable mCRC who were undergoing systemic treatment with chemotherapy and/or targeted therapy. Molecular biology techniques were employed to analyse primary tumour samples from these patients. RT-qPCR was utilized to assess the expression of genes associated with fibrosis (TGF-ß and ß-catenin) and cell growth pathways (c-MYC). NGS using a 25-gene panel (TumorSec) was performed to identify specific genomic mutations. The patients were then classified into one of the four CMS categories according to the clinical consensus of a Tumour Board. Informed consent was obtained from all the patients prior to their participation in this study. All techniques were conducted at University of Chile. RESULTS: Twenty-six patients were studied with the techniques and then evaluated by the Tumour Board to determine the specific CMS. Among them, 23% (n = 6), 19% (n = 5), 31% (n = 8), and 19% (n = 5) were classified as CMS1, CMS2, CMS3, and CMS4, respectively. Additionally, 8% of patients (n = 2) could not be classified into any of the four CMS categories. The median overall survival of the total sample was 28 mo, and for CMS1, CMS2, CMS3 and CMS4 it was 11, 20, 30 and 45 mo respectively, with no statistically significant differences between groups. CONCLUSION: A molecular biology workflow and clinical consensus analysis can be used to accurately classify mCRC patients. This classification process, which divides patients into the four CMS categories, holds significant potential for improving research strategies and targeted therapies tailored to the specific characteristics of mCRC.

2.
Cancers (Basel) ; 15(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37627062

RESUMO

A strong association between the proportion of indigenous South American Mapuche ancestry and the risk of gallbladder cancer (GBC) has been reported in observational studies. Chileans show the highest incidence of GBC worldwide, and the Mapuche are the largest indigenous people in Chile. We set out to assess the confounding-free effect of the individual proportion of Mapuche ancestry on GBC risk and to investigate the mediating effects of gallstone disease and body mass index (BMI) on this association. Genetic markers of Mapuche ancestry were selected based on the informativeness for assignment measure, and then used as instrumental variables in two-sample Mendelian randomization analyses and complementary sensitivity analyses. Results suggested a putatively causal effect of Mapuche ancestry on GBC risk (inverse variance-weighted (IVW) risk increase of 0.8% per 1% increase in Mapuche ancestry proportion, 95% CI 0.4% to 1.2%, p = 6.7 × 10-5) and also on gallstone disease (3.6% IVW risk increase, 95% CI 3.1% to 4.0%), pointing to a mediating effect of gallstones on the association between Mapuche ancestry and GBC. In contrast, the proportion of Mapuche ancestry showed a negative effect on BMI (IVW estimate -0.006 kg/m2, 95% CI -0.009 to -0.003). The results presented here may have significant implications for GBC prevention and are important for future admixture mapping studies. Given that the association between the individual proportion of Mapuche ancestry and GBC risk previously noted in observational studies appears to be free of confounding, primary and secondary prevention strategies that consider genetic ancestry could be particularly efficient.

3.
Cancer Res ; 83(18): 3145-3158, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37404061

RESUMO

HER2 mutations drive the growth of a subset of breast cancers and are targeted with HER2 tyrosine kinase inhibitors (TKI) such as neratinib. However, acquired resistance is common and limits the durability of clinical responses. Most HER2-mutant breast cancers progressing on neratinib-based therapy acquire secondary mutations in HER2. It is unknown whether these secondary HER2 mutations, other than the HER2T798I gatekeeper mutation, are causal to neratinib resistance. Herein, we show that secondary acquired HER2T862A and HER2L755S mutations promote resistance to HER2 TKIs via enhanced HER2 activation and impaired neratinib binding. While cells expressing each acquired HER2 mutation alone were sensitive to neratinib, expression of acquired double mutations enhanced HER2 signaling and reduced neratinib sensitivity. Computational structural modeling suggested that secondary HER2 mutations stabilize the HER2 active state and reduce neratinib binding affinity. Cells expressing double HER2 mutations exhibited resistance to most HER2 TKIs but retained sensitivity to mobocertinib and poziotinib. Double-mutant cells showed enhanced MEK/ERK signaling, which was blocked by combined inhibition of HER2 and MEK. Together, these findings reveal the driver function of secondary HER2 mutations in resistance to HER2 inhibition and provide a potential treatment strategy to overcome acquired resistance to HER2 TKIs in HER2-mutant breast cancer. SIGNIFICANCE: HER2-mutant breast cancers acquire secondary HER2 mutations that drive resistance to HER2 tyrosine kinase inhibitors, which can be overcome by combined inhibition of HER2 and MEK.


Assuntos
Neoplasias da Mama , Quinolinas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Mutação , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
4.
Int J Cancer ; 153(6): 1151-1161, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37260300

RESUMO

Since 2006, Chile has been implementing a gallbladder cancer (GBC) prevention program based on prophylactic cholecystectomy for gallstone patients aged 35 to 49 years. The effectiveness of this prevention program has not yet been comprehensively evaluated. We conducted a retrospective study of 473 Chilean GBC patients and 2137 population-based controls to develop and internally validate three GBC risk prediction models. The Baseline Model accounted for gallstones while adjusting for sex and birth year. Enhanced Model I also included the non-genetic risk factors: body mass index, educational level, Mapuche surnames, number of children and family history of GBC. Enhanced Model II further included Mapuche ancestry and the genotype for rs17209837. Multiple Cox regression was applied to assess the predictive performance, quantified by the area under the precision-recall curve (AUC-PRC) and the number of cholecystectomies needed (NCN) to prevent one case of GBC at age 70 years. The AUC-PRC for the Baseline Model (0.44%, 95%CI 0.42-0.46) increased by 0.22 (95%CI 0.15-0.29) when non-genetic factors were included, and by 0.25 (95%CI 0.20-0.30) when incorporating non-genetic and genetic factors. The overall NCN for Chileans with gallstones (115, 95%CI 104-131) decreased to 92 (95%CI 60-128) for Chileans with a higher risk than the median according to Enhanced Model I, and to 80 (95%CI 59-110) according to Enhanced Model II. In conclusion, age, sex and gallstones are strong risk factors for GBC, but consideration of other non-genetic factors and individual genotype data improves risk prediction and may optimize allocation of financial resources and surgical capacity.


Assuntos
Neoplasias da Vesícula Biliar , Cálculos Biliares , Idoso , Humanos , Estudos de Casos e Controles , Neoplasias da Vesícula Biliar/epidemiologia , Neoplasias da Vesícula Biliar/genética , Cálculos Biliares/epidemiologia , Cálculos Biliares/genética , Cálculos Biliares/complicações , Incidência , Estudos Retrospectivos , Fatores de Risco , Masculino , Feminino , Adulto , Pessoa de Meia-Idade
5.
World J Gastrointest Oncol ; 14(9): 1654-1664, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36187383

RESUMO

Colorectal cancer (CRC) is a major cause of mortality worldwide, associated with a steadily growing prevalence. Notably, the identification of KRAS, NRAS, and BRAF mutations has markedly improved targeted CRC therapy by affording treatments directed against the epidermal growth factor receptor (EGFR) and other anti-angiogenic therapies. However, the survival benefit conferred by these therapies remains variable and difficult to predict, owing to the high level of molecular heterogeneity among patients with CRC. Although classification into consensus molecular subtypes could optimize response prediction to targeted therapies, the acquisition of resistance mutations to targeted therapy is, in part, responsible for the lack of response in some patients. However, the acquisition of such mutations can induce challenges in clinical practice. The utility of liquid biopsy to detect resistance mutations against anti-EGFR therapy has recently been described. This approach may constitute a new standard in the decision algorithm for targeted CRC therapy.

6.
Gene ; 819: 146246, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35122924

RESUMO

Triple-negative breast cancer (TNBC) represents a challenge in the search for new therapeutic targets. TNBCs are aggressive and generate resistance to chemotherapy. Tumors of TNBC patients with poor prognosis present a high level of adenosine deaminase acting on RNA1 (ADAR1). We explore the connection of ADAR1 with the canonical Wnt signaling pathway and the effect of modulation of its expression in TNBC. Expression data from cell line sequencing (DepMap) and TCGA samples were downloaded and analyzed. We lentivirally generated an MDA-MB-231 breast cancer cell line that overexpress (OE) ADAR1p110 or an ADAR knockdown. Abundance of different proteins related to Wnt/ß-catenin pathway and activity of nuclear ß-catenin were analyzed by Western blot and luciferase TOP/FOP reporter assay, respectively. Cell invasion was analyzed by matrigel assay. In mice, we study the behavior of tumors generated from ADAR1p110 (OE) cells and tumor vascularization immunostaining were analyzed. ADAR1 connects to the canonical Wnt pathway in TNBC. ADAR1p110 overexpression decreased GSK-3ß, while increasing active ß-catenin. It also increased the activity of nuclear ß-catenin and increased its target levels. ADAR1 knockdown has the opposite effect. MDA-MB-231 ADAR1 (OE) cells showed increased capacity of invasion. Subsequently, we observed that tumors derived from ADAR1p110 (OE) cells showed increased invasion towards the epithelium, and increased levels of Survivin and CD-31 expressed in vascular endothelial cells. These results indicate that ADAR1 overexpression alters the expression of some key components of the canonical Wnt pathway, favoring invasion and neovascularization, possibly through activation of the ß-catenin, which suggests an unknown role of ADAR1p110 in aggressiveness of TNBC tumors.


Assuntos
Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Via de Sinalização Wnt , beta Catenina/metabolismo
7.
Cancers (Basel) ; 14(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35158906

RESUMO

Long noncoding RNAs (lncRNAs) play key roles in cell processes and are good candidates for cancer risk prediction. Few studies have investigated the association between individual genotypes and lncRNA expression. Here we integrate three separate datasets with information on lncRNA expression only, both lncRNA expression and genotype, and genotype information only to identify circulating lncRNAs associated with the risk of gallbladder cancer (GBC) using robust linear and logistic regression techniques. In the first dataset, we preselect lncRNAs based on expression changes along the sequence "gallstones → dysplasia → GBC". In the second dataset, we validate associations between genetic variants and serum expression levels of the preselected lncRNAs (cis-lncRNA-eQTLs) and build lncRNA expression prediction models. In the third dataset, we predict serum lncRNA expression based on individual genotypes and assess the association between genotype-based expression and GBC risk. AC084082.3 and LINC00662 showed increasing expression levels (p-value = 0.009), while C22orf34 expression decreased in the sequence from gallstones to GBC (p-value = 0.04). We identified and validated two cis-LINC00662-eQTLs (r2 = 0.26) and three cis-C22orf34-eQTLs (r2 = 0.24). Only LINC00662 showed a genotyped-based serum expression associated with GBC risk (OR = 1.25 per log2 expression unit, 95% CI 1.04-1.52, p-value = 0.02). Our results suggest that preselection of lncRNAs based on tissue samples and exploitation of cis-lncRNA-eQTLs may facilitate the identification of circulating noncoding RNAs linked to cancer risk.

8.
World J Clin Oncol ; 12(11): 1000-1008, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34909395

RESUMO

The identification of several genetic mutations in colorectal cancer (CRC) has allowed a better comprehension of the prognosis and response to different antineoplastic treatments. Recently, through a systematic process, consensus molecular subtypes (CMS) have been described to characterize genetic and molecular mutations in CRC patients. Through CMS, CRC patients can be categorized into four molecular subtypes of CRC by wide transcriptional genome analysis. CMS1 has microsatellite instability and mutations in CIMP and BRAF pathways. CMS2, distinguished by mutations in specific pathways linked to cellular metabolism, also has a better prognosis. CMS3 has a KRAS mutation as a hallmark. CMS4 presents mutations in fibrogenesis pathways and mesenchymal-epithelial transition, associated with a worse prognosis. CMS classification can be a meaningful step in providing possible answers to important issues in CRC, such as the use of adjuvant chemotherapy in stage II, personalized first-line chemotherapy for metastasic CRC, and possible new target treatments that address specific pathways in each molecular subtype. Understanding CMS is a crucial step in personalized medicine, although prospective clinical trials selecting patients by CMS are required to pass proof-of-concept before becoming a routine clinical tool in oncology routine care.

9.
Rev. méd. Chile ; 149(11)nov. 2021.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1389393

RESUMO

With or without a COVID19 pandemic, cancer is and will continue to be one of the greatest health challenges on the planet. In Chile, during 2016, this disease was the second cause of death in the country and during 2019, it was the first cause in seven Chilean regions, surpassing cardiovascular diseases. With the advent of precision medicine as a powerful tool for cancer control, it is necessary to have genomic, proteomic, and molecular data in general, ideally on a population scale. This is essential for decision-making, for example in public and private oncology, to be as cost-effective as possible. Chile has a mass of high-quality researchers in cancer. However, until today the investment in research and development is far below the peers in the OECD. In this work we put into perspective the role of precision medicine and omic sciences as essential tools for public health. We offer a brief national diagnosis of the knowledge collected to date by the local scientific community regarding onco-genomic data from our own population. We finally discuss the potential behind the strengthening of this scientific knowledge, aiming to optimize the comprehensive management of cancer.

10.
J Pers Med ; 11(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34575676

RESUMO

Next-generation sequencing (NGS) is progressively being used in clinical practice. However, several barriers preclude using this technology for precision oncology in most Latin American countries. To overcome some of these barriers, we have designed a 25-gene panel that contains predictive biomarkers for most current and near-future available therapies in Chile and Latin America. Library preparation was optimized to account for low DNA integrity observed in formalin-fixed paraffin-embedded tissue. The workflow includes an automated bioinformatic pipeline that accounts for the underrepresentation of Latin Americans in genome databases. The panel detected small insertions, deletions, and single nucleotide variants down to allelic frequencies of 0.05 with high sensitivity, specificity, and reproducibility. The workflow was validated in 272 clinical samples from several solid tumor types, including gallbladder (GBC). More than 50 biomarkers were detected in these samples, mainly in BRCA1/2, KRAS, and PIK3CA genes. In GBC, biomarkers for PARP, EGFR, PIK3CA, mTOR, and Hedgehog signaling inhibitors were found. Thus, this small NGS panel is an accurate and sensitive method that may constitute a more cost-efficient alternative to multiple non-NGS assays and costly, large NGS panels. This kind of streamlined assay with automated bioinformatics analysis may facilitate the implementation of precision medicine in Latin America.

11.
J Mol Diagn ; 23(9): 1127-1137, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34186175

RESUMO

About 4% to 7% of the non-small-cell lung cancer patients have anaplastic lymphoma kinase (ALK) rearrangements, and specific targeted therapies improve patients' outcomes significantly. ALK gene fusions are detected by immunohistochemistry or fluorescent in situ hybridization as gold standards in South America. Next-generation sequencing-based assays are a reliable alternative, able to perform simultaneous detection of multiple events from a single sample. We analyzed 4240 non-small-cell lung cancer samples collected in 37 hospitals from Chile, Brazil, and Peru, where ALK rearrangements were determined as part of their standard of care (SofC) using either immunohistochemistry or fluorescent in situ hybridization. A subset of 1450 samples was sequenced with the Oncomine Focus Assay (OFA), and the concordance with the SofC tests was measured. An orthogonal analysis was performed using a real-time quantitative PCR echinoderm microtubule-associated protein-like 4-ALK fusion detection kit. ALK fusion prevalence is similar for Chile (3.67%; N = 2142), Brazil (4.05%; N = 1013), and Peru (4.59%; N = 675). Although a comparison between OFA and SofC assays showed similar sensitivity, OFA had significantly higher specificity and higher positive predictive value, which opens new opportunities for a more specific determination of ALK gene rearrangements.


Assuntos
Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Fusão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias Pulmonares/genética , Proteínas de Fusão Oncogênica/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Brasil/epidemiologia , Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Chile/epidemiologia , Feminino , Rearranjo Gênico , Humanos , Imuno-Histoquímica/métodos , Hibridização in Situ Fluorescente/métodos , Neoplasias Pulmonares/epidemiologia , Masculino , Pessoa de Meia-Idade , Peru/epidemiologia , Estudos Prospectivos , Estudos Retrospectivos , Padrão de Cuidado , Adulto Jovem
12.
Rev Med Chil ; 149(11): 1657-1663, 2021 Nov.
Artigo em Espanhol | MEDLINE | ID: mdl-35735330

RESUMO

With or without a COVID19 pandemic, cancer is and will continue to be one of the greatest health challenges on the planet. In Chile, during 2016, this disease was the second cause of death in the country and during 2019, it was the first cause in seven Chilean regions, surpassing cardiovascular diseases. With the advent of precision medicine as a powerful tool for cancer control, it is necessary to have genomic, proteomic, and molecular data in general, ideally on a population scale. This is essential for decision-making, for example in public and private oncology, to be as cost-effective as possible. Chile has a mass of high-quality researchers in cancer. However, until today the investment in research and development is far below the peers in the OECD. In this work we put into perspective the role of precision medicine and omic sciences as essential tools for public health. We offer a brief national diagnosis of the knowledge collected to date by the local scientific community regarding onco-genomic data from our own population. We finally discuss the potential behind the strengthening of this scientific knowledge, aiming to optimize the comprehensive management of cancer.


Assuntos
COVID-19 , Neoplasias , Chile/epidemiologia , Atenção à Saúde , Humanos , Neoplasias/terapia , Proteômica
13.
Hepatology ; 73(5): 1783-1796, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32893372

RESUMO

BACKGROUND AND AIMS: Gallbladder cancer (GBC) is a neglected disease with substantial geographical variability: Chile shows the highest incidence worldwide, while GBC is relatively rare in Europe. Here, we investigate the causal effects of risk factors considered in current GBC prevention programs as well as C-reactive protein (CRP) level as a marker of chronic inflammation. APPROACH AND RESULTS: We applied two-sample Mendelian randomization (MR) using publicly available data and our own data from a retrospective Chilean and a prospective European study. Causality was assessed by inverse variance weighted (IVW), MR-Egger regression, and weighted median estimates complemented with sensitivity analyses on potential heterogeneity and pleiotropy, two-step MR, and mediation analysis. We found evidence for a causal effect of gallstone disease on GBC risk in Chileans (P = 9 × 10-5 ) and Europeans (P = 9 × 10-5 ). A genetically elevated body mass index (BMI) increased GBC risk in Chileans (P = 0.03), while higher CRP concentrations increased GBC risk in Europeans (P = 4.1 × 10-6 ). European results suggest causal effects of BMI on gallstone disease (P = 0.008); public Chilean data were not, however, available to enable assessment of the mediation effects among causal GBC risk factors. CONCLUSIONS: Two risk factors considered in the current Chilean program for GBC prevention are causally linked to GBC risk: gallstones and BMI. For Europeans, BMI showed a causal effect on gallstone risk, which was itself causally linked to GBC risk.


Assuntos
Índice de Massa Corporal , Proteína C-Reativa/análise , Neoplasias da Vesícula Biliar/etiologia , Cálculos Biliares/complicações , Adulto , Fatores Etários , Chile/epidemiologia , Europa (Continente)/epidemiologia , Feminino , Neoplasias da Vesícula Biliar/epidemiologia , Neoplasias da Vesícula Biliar/genética , Cálculos Biliares/epidemiologia , Predisposição Genética para Doença/genética , Variação Genética , Humanos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Risco
14.
Hepatology ; 73(6): 2293-2310, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33020926

RESUMO

BACKGROUND AND AIMS: Gallbladder cancer (GBC) is a highly aggressive malignancy of the biliary tract. Most cases of GBC are diagnosed in low-income and middle-income countries, and research into this disease has long been limited. In this study we therefore investigate the epigenetic changes along the model of GBC carcinogenesis represented by the sequence gallstone disease → dysplasia → GBC in Chile, the country with the highest incidence of GBC worldwide. APPROACH AND RESULTS: To perform epigenome-wide methylation profiling, genomic DNA extracted from sections of formalin-fixed, paraffin-embedded gallbladder tissue was analyzed using Illumina Infinium MethylationEPIC BeadChips. Preprocessed, quality-controlled data from 82 samples (gallstones n = 32, low-grade dysplasia n = 13, high-grade dysplasia n = 9, GBC n = 28) were available to identify differentially methylated markers, regions, and pathways as well as changes in copy number variations (CNVs). The number and magnitude of epigenetic changes increased with disease development and predominantly involved the hypermethylation of cytosine-guanine dinucleotide islands and gene promoter regions. The methylation of genes implicated in Wnt signaling, Hedgehog signaling, and tumor suppression increased with tumor grade. CNVs also increased with GBC development and affected cyclin-dependent kinase inhibitor 2A, MDM2 proto-oncogene, tumor protein P53, and cyclin D1 genes. Gains in the targetable Erb-B2 receptor tyrosine kinase 2 gene were detected in 14% of GBC samples. CONCLUSIONS: Our results indicate that GBC carcinogenesis comprises three main methylation stages: early (gallstone disease and low-grade dysplasia), intermediate (high-grade dysplasia), and late (GBC). The identified gradual changes in methylation and CNVs may help to enhance our understanding of the mechanisms underlying this aggressive disease and eventually lead to improved treatment and early diagnosis of GBC.


Assuntos
Metilação de DNA , Epigênese Genética , Neoplasias da Vesícula Biliar/genética , Cálculos Biliares/genética , Hiperplasia/genética , Carcinogênese , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Feminino , Genes Neoplásicos/genética , Humanos , Masculino
15.
Life Sci ; 268: 118956, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33383047

RESUMO

AIMS: Breast cancer is one of the leading causes of woman deaths worldwide, being a major public health problem. It has been reported that the expression of the RNA-editing enzyme Adenosine Deaminase Acting on RNAs 1 (ADAR1) is upregulated in breast cancer, predicting poor prognosis in patients. A few reports in literature examine ADAR1 and long non-coding RNAs (lncRNAs) interplay in cancer and suggest key roles in cancer-related pathways. This study aimed to investigate whether ADAR1 could alter the expression levels of lncRNAs and explore how those changes are related to breast cancer biology. MAIN METHODS: ADAR1 overexpression and knockdown studies were performed in breast cancer cell lines to analyze the effects over lncRNAs expression. Guilt-by-Association correlation analysis of the TCGA-BRCA cohort was performed to predict the function of the lncRNA LINC00944. KEY FINDINGS: Here, we show that LINC00944 is responsive to ADAR1 up- and downregulation in breast cancer cells. We found that LINC00944 expression has a strong relationship with immune signaling pathways. Further assessment of the TCGA-BRCA cohort showed that LINC00944 expression was positively correlated to tumor-infiltrating T lymphocytes and pro-apoptotic markers. Moreover, we found that LINC00944 expression was correlated to the age at diagnosis, tumor size, and estrogen and progesterone receptor expression. Finally, we show that low expression of LINC00944 is correlated to poor prognosis in breast cancer patients. SIGNIFICANCE: Our study provides further evidence of the effect of ADAR1 over lncRNA expression levels, and on the participation of LINC00944 in breast cancer, suggesting to further investigate its potential role as prognostic biomarker.


Assuntos
Adenosina Desaminase/genética , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Adenosina Desaminase/metabolismo , Adulto , Apoptose/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Mutação com Ganho de Função , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Linfócitos do Interstício Tumoral/patologia , Pessoa de Meia-Idade , Prognóstico , Proteínas de Ligação a RNA/metabolismo
16.
Cancers (Basel) ; 12(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899426

RESUMO

Cancer cell lines allow the identification of clinically relevant alterations and the prediction of drug response. However, sequencing data for hepatobiliary cancer cell lines in general, and particularly gallbladder cancer (GBC), are sparse. Here, we apply RNA sequencing to characterize 10 GBC, eight hepatocellular carcinoma, and five cholangiocarcinoma (CCA) cell lines. RNA extraction, quality control, library preparation, sequencing, and pre-processing of sequencing data were implemented using state-of-the-art techniques. Public data from the MSK-IMPACT database and a large cohort of Japanese biliary tract cancer patients were used to illustrate the usage of the released data. The total number of exonic mutations varied from 7207 for the cell line NOZ to 9760 for HuCCT1. Researchers planning experiments that require TP53 mutations could use the cell lines NOZ, OCUG-1, SNU308, or YoMi. Mz-Cha-1 showed mutations in ATM, SNU308 presented SMAD4 mutations, and the only investigated cell line that showed ARID1A mutations was GB-d1. SNU478 was the cell line with the global gene expression pattern most similar to GBC, intrahepatic CCA, and extrahepatic CCA. EGFR, KMT2D, and KMT2C generally presented a higher expression in the investigated cell lines than in Japanese primary GBC tumors. We provide the scientific community with detailed mutation and gene expression data, together with three showcase applications, with the aim of facilitating the design of future in vitro cell culture assays for research on hepatobiliary cancer.

17.
Biochim Biophys Acta Mol Cell Res ; 1867(8): 118716, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32275931

RESUMO

RNA editing has emerged as a novel mechanism in cancer progression. The double stranded RNA-specific adenosine deaminase (ADAR) modifies the expression of an important proportion of genes involved in cell cycle control, DNA damage response (DDR) and transcriptional processing, suggesting an important role of ADAR in transcriptome regulation. Despite the phenotypic implications of ADAR deregulation in several cancer models, the role of ADAR on DDR and proliferation in breast cancer has not been fully addressed. Here, we show that ADAR expression correlates significantly with clinical outcomes and DDR, cell cycle and proliferation mRNAs of previously reported edited transcripts in breast cancer patients. ADAR's knock-down in a breast cancer cell line produces stability changes of mRNAs involved in DDR and DNA replication. Breast cancer cells with reduced levels of ADAR show a decreased viability and an increase in apoptosis, displaying a significant decrease of their DDR activation, compared to control cells. These results suggest that ADAR plays an important role in breast cancer progression through the regulation of mRNA stability and expression of those genes involved in proliferation and DDR impacting the viability of breast cancer cells.


Assuntos
Adenosina Desaminase/metabolismo , Neoplasias da Mama/metabolismo , Ciclo Celular/fisiologia , Dano ao DNA/fisiologia , Edição de RNA , Proteínas de Ligação a RNA/metabolismo , Transcriptoma , Adenosina Desaminase/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Feminino , Humanos , Células MCF-7 , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
18.
J Mol Biol ; 432(10): 3222-3238, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32198114

RESUMO

Several mechanisms directing a rapid transcriptional reactivation of genes immediately after mitosis have been described. However, little is known about the maintenance of repressive signals during mitosis. In this work, we address the role of Ski in the repression of gene expression during M/G1 transition in mouse embryonic fibroblasts (MEFs). We found that Ski localises as a distinct pair of dots at the pericentromeric region of mitotic chromosomes, and the absence of the protein is related to high acetylation and low tri-methylation of H3K9 in pericentromeric major satellite. Moreover, differential expression assays in early G1 cells showed that the presence of Ski is significantly associated with repression of genes localised nearby to pericentromeric DNA. In mitotic cells, chromatin immunoprecipitation assays confirmed the association of Ski to major satellite and the promoters of the most repressed genes: Mmp3, Mmp10 and Mmp13. These genes are at pericentromeric region of chromosome 9. In these promoters, the presence of Ski resulted in increased H3K9 tri-methylation levels. This Ski-dependent regulation is also observed during interphase. Consequently, Mmp activity is augmented in Ski-/- MEFs. Altogether, these data indicate that association of Ski with the pericentromeric region of chromosomes during mitosis is required to maintain the silencing bookmarks of underlying chromatin.


Assuntos
Centrômero/genética , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/citologia , Histonas/metabolismo , Metaloproteinases da Matriz Secretadas/genética , Proteínas Proto-Oncogênicas/metabolismo , Acetilação , Animais , Células Cultivadas , Centrômero/metabolismo , Regulação para Baixo , Fibroblastos/metabolismo , Metaloproteinase 10 da Matriz/genética , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 3 da Matriz/genética , Metilação , Camundongos , Mitose , Regiões Promotoras Genéticas , Ativação Transcricional
19.
Cancer Epidemiol ; 65: 101643, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32058310

RESUMO

BACKGROUND: The first large-scale genome-wide association study of gallbladder cancer (GBC) recently identified and validated three susceptibility variants in the ABCB1 and ABCB4 genes for individuals of Indian descent. We investigated whether these variants were also associated with GBC risk in Chileans, who show the highest incidence of GBC worldwide, and in Europeans with a low GBC incidence. METHODS: This population-based study analysed genotype data from retrospective Chilean case-control (255 cases, 2042 controls) and prospective European cohort (108 cases, 181 controls) samples consistently with the original publication. RESULTS: Our results confirmed the reported associations for Chileans with similar risk effects. Particularly strong associations (per-allele odds ratios close to 2) were observed for Chileans with high Native American (=Mapuche) ancestry. No associations were noticed for Europeans, but the statistical power was low. CONCLUSION: Taking full advantage of genetic and ethnic differences in GBC risk may improve the efficiency of current prevention programs.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Neoplasias da Vesícula Biliar/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Chile/epidemiologia , Europa (Continente)/epidemiologia , Feminino , Neoplasias da Vesícula Biliar/epidemiologia , Estudos de Associação Genética , Humanos , Índios Sul-Americanos/genética , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , População Branca/genética
20.
J Cell Physiol ; 234(3): 2037-2050, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30343491

RESUMO

Transient Receptor Potential Melastatin 4 (TRPM4) is a Ca2+ -activated and voltage-dependent monovalent cation channel, which depolarizes the plasma cell membrane, thereby modulating Ca2+ influx across Ca2+ -permeable pathways. TRPM4 is involved in different physiological processes such as T cell activation and the migration of endothelial and certain immune cells. Overexpression of this channel has been reported in various types of tumors including prostate cancer. In this study, a significant overexpression of TRPM4 was found only in samples from cancer with a Gleason score higher than 7, which are more likely to spread. To evaluate whether TRPM4 overexpression was related to the spreading capability of tumors, TRPM4 was knockdown by using shRNAs in PC3 prostate cancer cells and the effect on cellular migration and invasion was analyzed. PC3 cells with reduced levels of TRPM4 (shTRPM4) display a decrease of the migration/invasion capability. A reduction in the expression of Snail1, a canonical epithelial to mesenchymal transition (EMT) transcription factor, was also observed. Consistently, these cells showed a significant change in the expression of key EMT markers such as MMP9, E-cadherin/N-cadherin, and vimentin, indicating a partial reversion of the EMT process. Whereas, the overexpression of TRPM4 in LnCaP cells resulted in increased levels of Snail1, reduction in the expression of E-cadherin and increase in their migration potential. This study suggests a new and indirect mechanism of regulation of migration/invasion process by TRPM4 in prostate cancer cells, by inducing the expression of Snail1 gene and consequently, increasing the EMT.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Canais de Cátion TRPM/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Modelos Biológicos , Gradação de Tumores , Invasividade Neoplásica , Células PC-3 , Neoplasias da Próstata/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...